

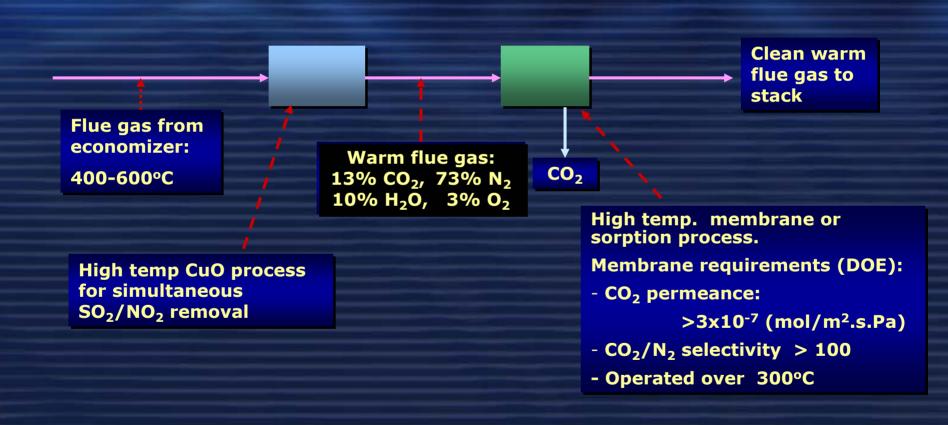
Dual-Phase Inorganic Membrane for High Temperature CO₂ Separation

Jerry Y.S. Lin, S. Chung, D. Li, J. Ida and J. Park

Department of Chemical & Material engineering
University of Cincinnati

Motivation

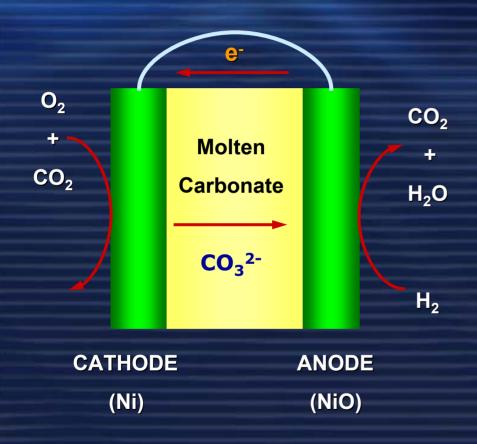
Why do we need to separate CO₂?


- Carbon dioxide emits from most industrial facilities
- Carbon dioxide causes 'Green House effect'
- Possible use as a feedstock (warm CO₂) to synthesize fuels

• Why do we use membrane for CO₂ separation?

- Simple, continuous and energy efficient process
- Applicable to the process at high temperature

Impact of this research


Inorganic membrane for CO₂ separation

- Polymeric membrane (unstable at high temperature)
- Microporous inorganic membrane (low selectivity at T>350°C)
- Ionic conducting membrane (from concept of fuel cell):

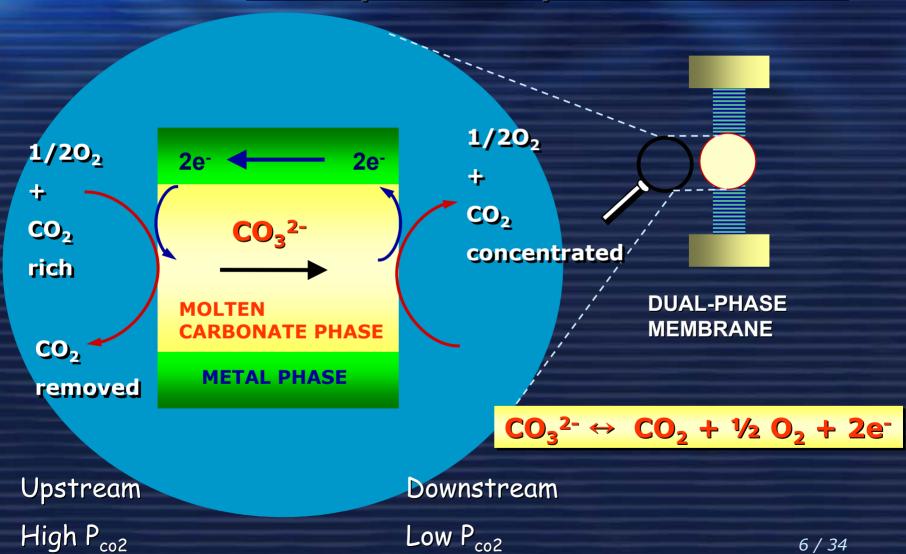
Operated at 400-600°C with high selectivity

Principle of MCFC

Common electrolyte:

Eutectic composition of Li₂CO₃ / K₂CO₃ (62 mol% / 38 mol%)

Operating Temperature:


600 ~ 650°C

Major problem:

Precipitation / Contamination of electrodes, reducing performance

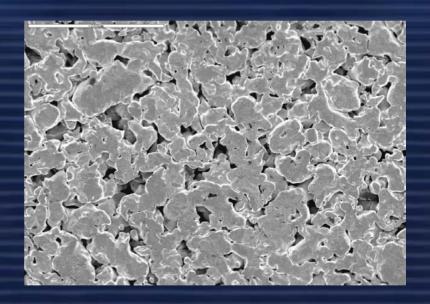
Concept of dual-phase membrane

Objectives

- Synthesis of the dual-phase membrane
 - Prepare dense and stable dual-phase membrane
- Characterization of dual-phase membrane
 - Gas-tightness for He and N₂
 - XRD / SEM analysis → Identification of dual phase
- Design of high temperature seal & cell
 - Sealing Test with various seals → Gas tight cell design
- CO₂ separation at high temperature
 - Permselectivity of CO_2/N_2 (400-600°C) > 100
 - Permeance of CO_2 (400~600°C) > 1~5 x10⁻⁷ mol/m².s.Pa

Experimental Strategy

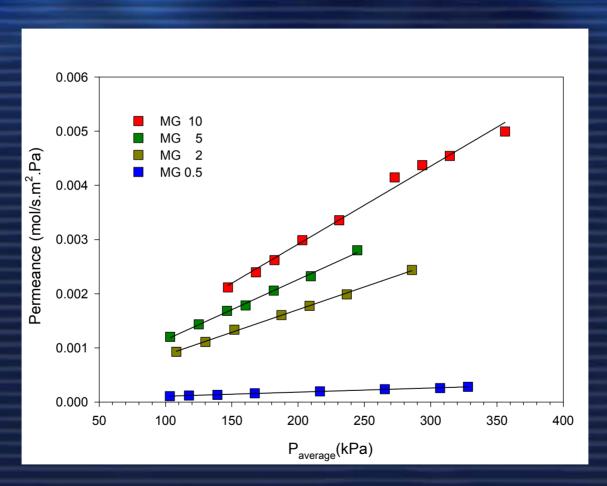
- Development of methods for membrane preparation (Completed)
 - Material selection, contact time, temperature, preheating
- Membrane characterization (Completed)
 - He gas tightness / XRD / SEM with EDS
- Designing of high temperature seal and cell (Completed)
 - He permeation and stability test with various seals
- Single / Binary gas permeation test (Completed)
 - gas (He, CO₂, N₂, O₂+CO₂) permeances at various Temp.
- Separation with multi-component gas (continued)
 - Multicomponent separation system (CO₂, N₂, O₂ mixture)


Material Selection

Metal support

General information

Material	Stainless steel 316
Structure	Spherical particle compacted
Media Grade	0.5, 2, 5, 10
Porosity	25-45%
Pore diameter	1~10μm
Electrical Conductivity	10 ⁴ S/cm

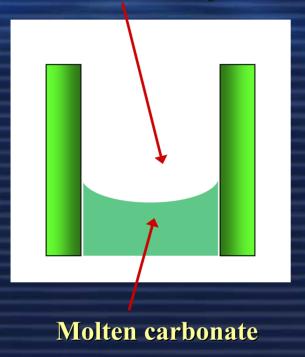

Media Grade 0.5 (SEM, 200x)

 \rightarrow He permeation test \rightarrow Selection of suitable support

Characterization of metal substrate

He Permeance vs Average Pressure

Characterization of metal substrate


Parameters related to pore size with various supports

Media grade	b x 10 ⁻¹⁰	a x 10 ⁻⁵	b/a x 10 ⁻⁵	r _թ [μm]	τ	Average pore diameter [µm]
0.5	7.44	3.64	2.05	2.65	3.93	5.30
2	83.84	2.96	28.34	36.75	93.71	73.50
5	111.37	3.45	32.25	41.82	99.22	83.64
10	144.07	3.25	44.34	57.51	152.64	115.02

Molten carbonate infiltration

Metal substrate pore

$$\Delta P = \frac{2\sigma}{R}, r = R\cos\theta$$

$$r = \frac{2\sigma\cos\theta}{\Delta P}$$

where, $\sigma = 237 \text{ mN/m}^2$ $\theta = 0 \text{ for stainless steel}$

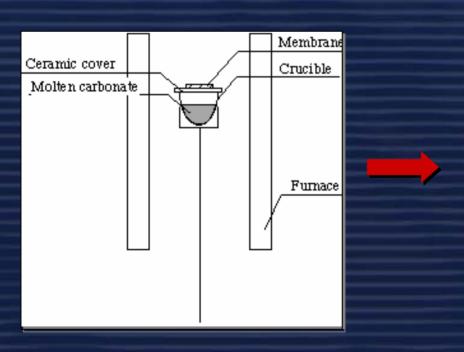
Capillary pressure △P=1 atm

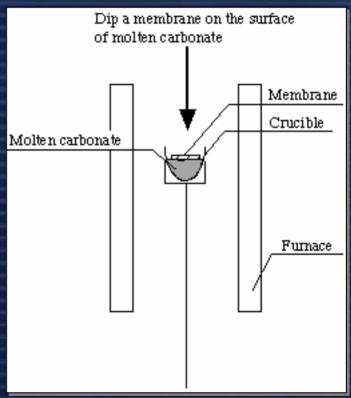
Substrate pore size 9µm.

Media grade 0.5 was chosen

Material Selection

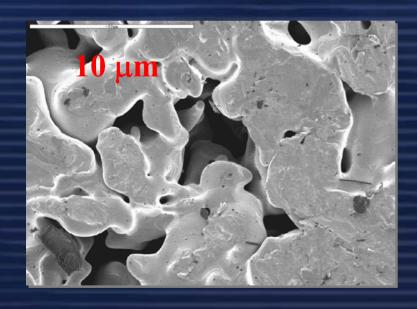
Carbonate Mixture

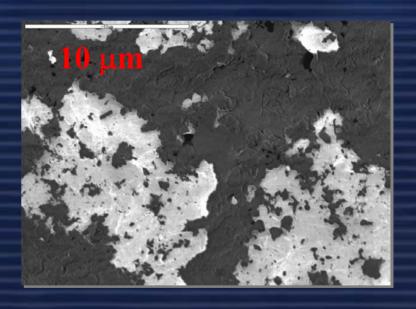

	Li/Na/K Carbonate	Li/K Carbonate	Li/Na Carbonate	Na/K Carbonate
Composition (mol%)	43.5/31.5/25	62/38	52/48	56/44
Melting Point (°C)	397	488	501	710
conductivity (S/cm)	1.24	1.15	1.75	1.17


[➤] Low melting point and high electrical conductivity
→ Li/Na/K (43.5/31.5/25 mol%) was chosen

Preparation of the dual phase membrane

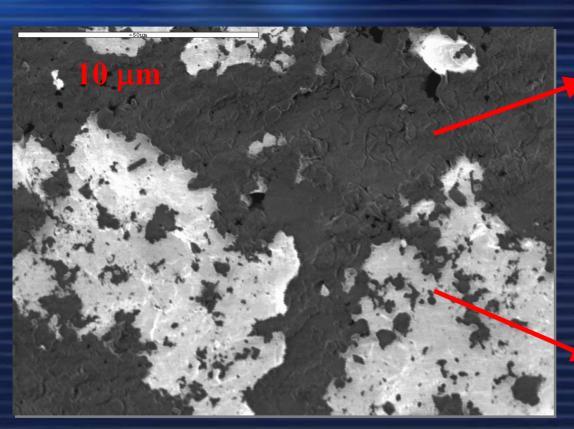
- Mix and melt Li/Na/K carbonate (43.5/31.5/25 mole%)
- Infiltrate molten carbonate into the pores by dipping method.

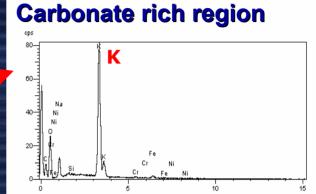


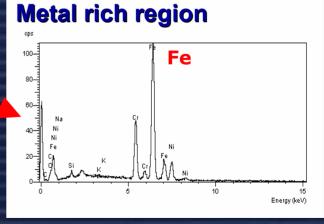

SEM image of dual-phase membrane

Before infiltration

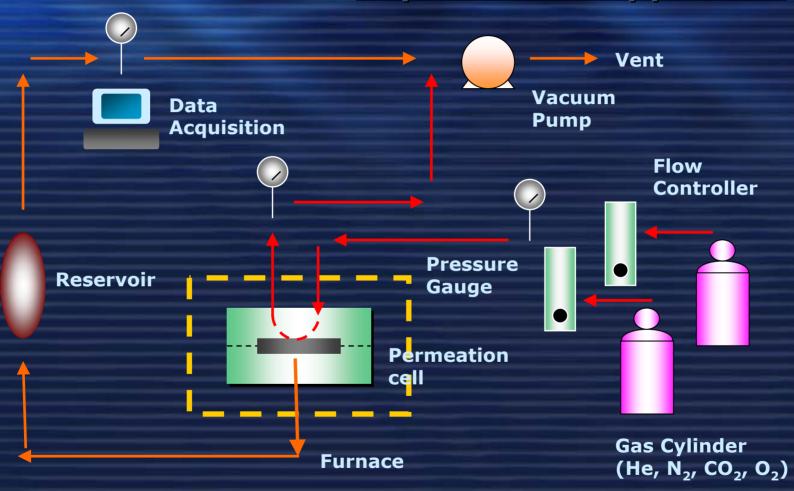
Metal support, 1000x


After infiltration




Metal-carbonate, 1000x

Identification of dual-phase structure



Dual-phase membrane is successfully prepared

Experimental Apparatus

unsteady state type Gas permeation setup

Seal design for high temperature

Comparison chart for high temperature seals

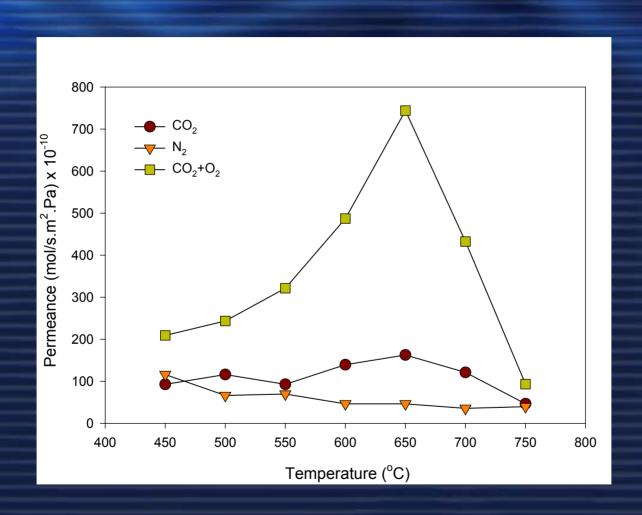
Seal	Rubber	Pure Graphite	Graphite Composite	Nickel Alloy	Gold
He Permeance (mol/s.m ² .Pa) at R.T.	2x10 ⁻¹⁰	1x10 ⁻⁷	8x10 ⁻⁹	7x10 ⁻⁹	6x10 ⁻¹⁰
He Permeance (mol/s.m ² .Pa) at 450°c	-	3x10 ⁻⁷	3x10 ⁻⁹	7x10 ⁻⁹	3x10 ⁻¹⁰
Stability at high Temp.	Burn	Vaporization	Vaporization	inert	Inert

Theoretical permeation flux

Wagner Theory

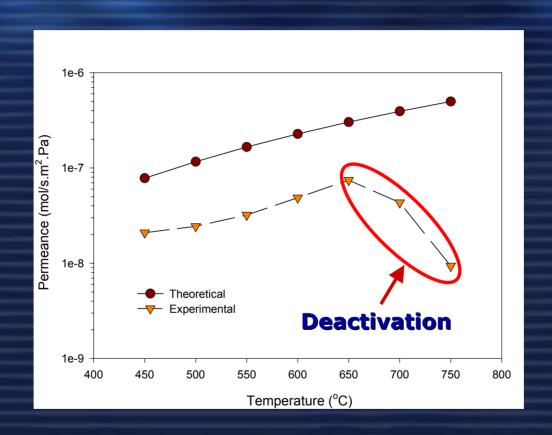
$$J(CO_2) = -\frac{RT}{16 F^2 L} \int_{\ln P_{CO_2}}^{\ln P_{CO_2}} \frac{\sigma_{el} \sigma_{ion}}{\sigma_{el} + \sigma_{ion}} d \ln P_{CO_2}$$

F (Faraday constant): 9.65 x 10⁴ C/mol , R (Gas constant), d (Thickness)

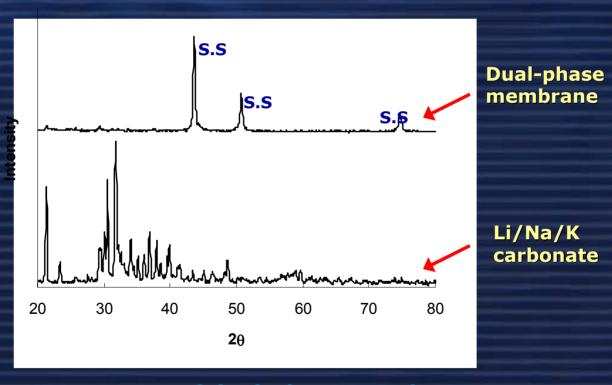

$$J(CO_2) \propto rac{\sigma_{el}\sigma_{ion}}{\sigma_{el}+\sigma_{ion}} \cong \sigma_{ion} \; (\; \because \sigma_{el} >> \sigma_{ion} \;) \; .$$

 σ_{ion} (CO₃²⁻ conductivity) : 0.5-2 S/cm (at 600 °C, Pco₂ = 1/3 atm) σ_{el} (Electronic conductivity : 10⁴ S/cm

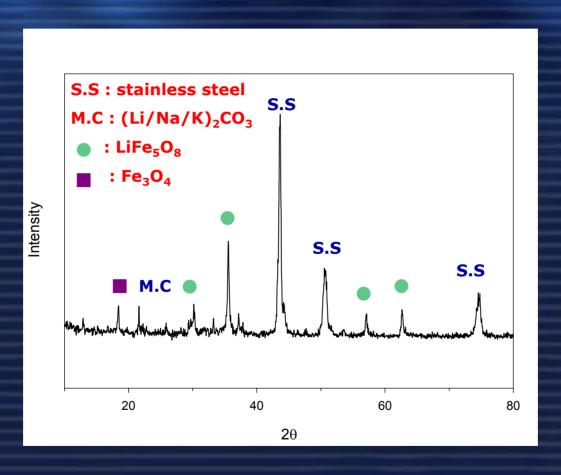
Rate determining variable : σ_{ion} CO₂ permeance : 2~10 x10⁻⁷ mol/m².s.Pa (for 1 mm thick membrane)


Single / Binary gas permeation test

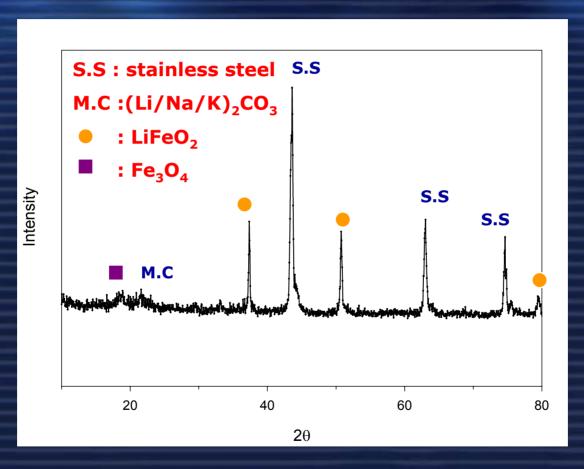
Gas permeation at various temperature (450-750°C)


Comparison of permeation flux

Deactivation occurred at higher than 650°C,


Structure of metal-carbonate membrane

XRD pattern of dual-phase membrane & molten carbonate


XRD analysis after permeation

XRD pattern of membrane after CO₂ permeation at 500°C

XRD analysis after permeation

XRD pattern of membrane after CO₂ + O₂ permeation at 600°C

Accomplishments

- Dense and stable dual-phase metal-carbonate membranes were successfully prepared by direct infiltration method. He gas-tightness of dual-phase membrane was 10⁻⁶ times higher than that of metal support.
- Permeance of CO₂ with O₂ increases with temperature and reaches the optimum at 650°C. Maximum ratio of CO₂/N₂ permeance was about 16 and CO₂ permeance was 7x10⁻⁸ mol/s.m².Pa.
- At higher temperature, membrane was deactivated due to oxidation, causing a significant decrease in permeance of CO₂ with O₂. XRD results shows that Iron oxide was formed on the membrane after CO₂ with O₂ permeation experiment.

Future work

Ceramic-carbonate system for CO₂ separation

- Deactivation of metal carbonate membrane is caused by oxidation of support or reaction of metal support with molten carbonate.
- Perovskite type ceramic support (Lanthanum Cobaltite)
 is an alternative support with better oxidation
 resistance than metal and good electronic conductivity.

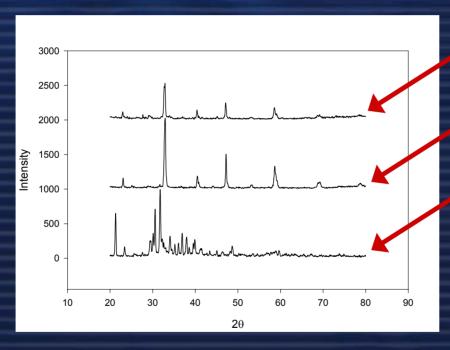
Multi-component separation experiment

- Design and setup new separation/permeation setup
- Perform separation of CO₂ from mixture of N₂,CO₂,O₂

Alternative support

Porous ceramic support

Material	Lanthanum Cobaltite
Composition	La _a Sr _b Co _c Fe _d O
	a:b:c:d=6:4:8:2
Electrical Conductivity	1200-1500 S/cm
	(400-600°C)
Preparation Method	Citrate Method

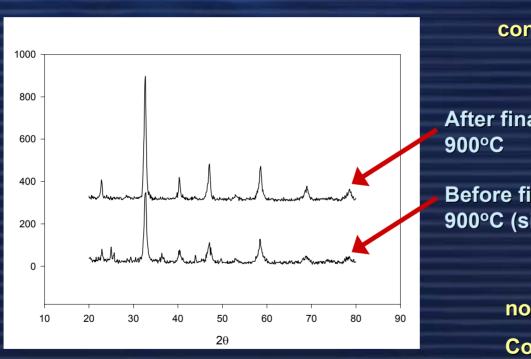


Preparation of ceramic supports

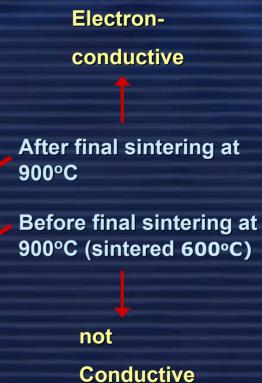
Step	Details
Precusors	La(NO ₃) ₃ .6H ₂ O, Sr(NO ₃) ₂ , Fe(NO ₃) ₃ . 6H ₂ O, Co(NO ₃) ₃ .6H ₂ O
Polymerization	100-105°C, stirring, 5h
Vaporization	100-105°C, 5h
Powder Drying	110°C
Self Ignition Step	400°C, 1hr
Preliminary Sintering	600°C, 5-24hr
Final Sintering	900°C, 20hr, Ramping Rate 2° C/min

Reactivity of LSCF + carbonate mixture

LSCF + Li/Na/K carbonate

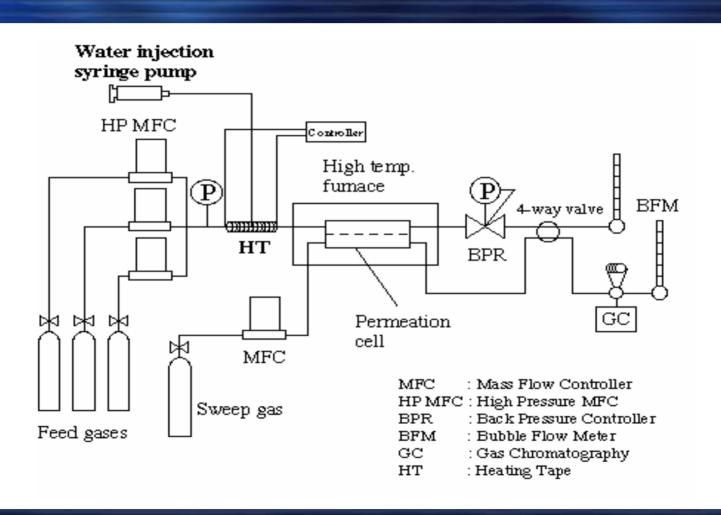

LSCF perovskite powder

Li/Na/K carbonate powder


XRD peaks of LSCF + Carbonate mixture (600°C, overnight)

Electronic conduction of the support

Before & After Final sintering 900°C, 24h


Comparison of support

Support	Porous 316LSS (Grade 0.5)	LSCF support	α -Alumina
Permeance (mol/s.m².Pa)	1.0 x 10 ⁻⁴	1.1 x 10 ⁻⁵	8.0 x 10 ⁻⁶
Mean pore size (μm)	5.8	2.2	1.0

➤ Variables to control pore size distribution → Particle size, Sintering temperature

Multicomponent separation system

Thank you for your attention

(cont'd)

Permeance of CO₂, N₂, O₂+CO₂ and their selectivity at 450-700 °C

Tomp	Permeance (mol/s.m2.Pa) x 10 ⁻¹⁰			Selectivity	
Temp. (°C)	CO ₂	N ₂	O ₂ + CO ₂	CO ₂ / N ₂	$O_2 + CO_2 / N_2$
450	93.00	116.24	209.24	0.80	1.80
500	116.24	66.44	243.60	1.75	3.67
550	93.00	69.76	321.48	1.33	4.61
600	139.48	46.48	487.16	3.00	10.48
650	162.72	46.48	744.00	3.50	15.98
700	121.28	35.76	432.56	3.39	12.09
750	46.68	39.80	93.36	1.17	2.34